Compare commits

...

3 Commits

7 changed files with 320 additions and 342 deletions

View File

@@ -7,53 +7,54 @@
typedef enum
{
NTP_UPDATE_FAILED = 0,
NTP_UPDATE_OK = 1,
NTP_UPDATE_PENDING = 2,
NTP_UPDATE_RETRY_DELAY = 3,
NTP_UPDATE_TOO_EARLY = 4,
NTP_UPDATE_SETUP_FAILED = 5,
} NtpUpdateState;
TIME_UPDATE_FAILED = 0,
TIME_UPDATE_OK = 1,
TIME_UPDATE_PENDING = 2,
} TimeUpdateState;
typedef enum
{
TM_INIT = 0,
TM_INITIAL_SYNC = 1,
TM_RETRY_SYNC = 2,
TM_NORMAL = 3,
TM_PROLONGED_SYNC_FAIL = 4,
TM_NORMAL = 2,
TM_SYNC_OVERDUE = 3,
TM_SYNC_TIMEOUT = 4,
TM_SETUP_FAILED = 5,
} TimeManagerState;
class TimeManager
{
#define NTP_MAX_UPDATE_TIME_US (500 * 1000) // 500ms max update time
#define NTP_MAX_UPDATE_TIME_US (5 * 1000 * 1000) // 5000ms max update time
public:
// constructor
// constructors
TimeManager();
TimeManager(const char *tz,
const char *ntp_server,
uint32 ntp_update_period_s,
uint32 ntp_retry_delay_us,
bool (*is_wifi_connected)(void),
uint32 ntp_max_offline_time_s,
UDPLogger *logger);
// ntp methods
bool ntp_sync_successful(void) const; // was there a NTP sync once?
bool ntp_update_failed_prolonged(void); // indicates if maximum time since last NTP update was too long
NtpUpdateState ntp_time_update(); // main NTP time update method, called in loop
// init
void init();
// ISR method
void increment_time_now_local(void); // should be called by timer ISR
// callback
void time_set_cb(void); // callback which is called when NTP time was set
// ntp methods
bool ntp_sync_successful(void) const; // was there a NTP sync once?
bool ntp_sync_overdue(void); // function to check if NTP sync is overdue
bool ntp_sync_timeout(void); // function to check if maximum time since last NTP sync has been reached
TimeUpdateState get_time(); // main time update method, called in loop
// getter for time values
bool tm_isdst(void); // true if summertime
int tm_day(void);
int tm_hour(void);
int tm_min(void);
int tm_mon(void);
int tm_year(void);
struct tm time_info(void);
bool isdst(void) const; // true if summertime (daylight saving time)
int day(void) const;
int hour(void) const;
int minute(void) const;
int month(void) const;
int year(void) const;
struct tm time_info(void) const;
// getter
TimeManagerState tm_state(void) const; // get current state
@@ -63,26 +64,17 @@ public:
void log_time(struct tm time_info) const; // log argument time_info
private:
// setup methods
void _set_up_ntp(void); // set up NTP server
void _set_up_timer_isr(void); // set up timer interrupt
void _set_up_ntp(void); // set up NTP server
bool (*_is_wifi_connected)(void); // function to check if wifi is connected
const char *_ntp_server = "pool.ntp.org"; // ntp server address
const char *_tz; // timezone
const char *_ntp_server; // ntp server address
UDPLogger *_logger; // logger instance
TimeManagerState _tm_state = TM_INIT; // Main state
struct tm _time_info = {0, 0, 0, 0, 0, 0, 0, 0, 0}; // structure tm holds time information
time_t _time_now_local = 0; // local timer value, updated by timer interrupt and synced by NTP when needed
time_t _time_now_ntp = 0; // NTP timer value, seconds since Epoch (1970) - UTC, only synced by NTP request.
time_t _now = 0; // local time value
time_t _ntp_sync_timestamp_s = 0; // timestamp of last successful ntp sync
TimeManagerState _tm_state = TM_INIT; // Main state
UDPLogger *_logger; // logger instance
uint32 _ntp_max_offline_time_s; // maximum time in seconds which is considered ok since last NTP update
uint32 _ntp_update_period_s; // NTP request update period in seconds
uint32 _ntp_retry_delay_us; // minimum retry delay in us between two NTP requests
uint32 _ntp_sync_timestamp_us = 0; // timestamp of last successful ntp update
};
inline void TimeManager::increment_time_now_local(void)
{
_time_now_local++;
}
#endif /* TIME_MANAGER_H */

View File

@@ -38,7 +38,7 @@
#define PERIOD_HEARTBEAT_US (1 * 1000 * 1000) // 1s
#define PERIOD_MATRIX_UPDATE_US (100 * 1000) // 100ms
#define PERIOD_NIGHTMODE_CHECK_US (20 * 1000 * 1000) // 20s
#define PERIOD_TIME_UPDATE_US (500 * 1000) // 500ms
#define PERIOD_TIME_UPDATE_US (1 * 1000 * 1000) // 1000ms
#define PERIOD_PONG_US (10 * 1000) // 10ms
#define PERIOD_SNAKE_US (50 * 1000) // 50ms
#define PERIOD_STATE_CHANGE_US (10 * 1000 * 1000) // 10s
@@ -69,11 +69,9 @@
#define MATRIX_HEIGHT (11)
// NTP macros
#define BUILD_YEAR (__DATE__ + 7) // Will expand to current year at compile time as string.
#define NTP_MININUM_RX_YEAR (atoi(BUILD_YEAR) - 1) // Will expand to current year minus one at compile time.
#define NTP_START_YEAR (1900) // NTP minimum year is 1900
#define NTP_UPDATE_PERIOD_S (6 * 3600) // 6h period between NTP updates
#define NTP_RETRY_DELAY_US (10 * 1000 * 1000) // 10s retry delay time between failed NTP requests
#define NTP_MAX_OFFLINE_TIME_S (7 * 24 * 3600) // Watchdog value, maxmimum offline time before a restart is triggered
#define BUILD_YEAR (__DATE__ + 7) // Will expand to current year at compile time as string.
#define NTP_MINIMUM_RX_YEAR (atoi(BUILD_YEAR) - 1) // Will expand to current year minus one at compile time.
#define NTP_START_YEAR (1900) // NTP minimum year is 1900
#define NTP_MAX_OFFLINE_TIME_S (7 * 24 * 3600) // Watchdog value, maximum offline time before a restart is triggered
#endif /* WORDCLOCK_CONSTANTS_H */

View File

@@ -82,7 +82,7 @@ void send_heartbeat(void);
void set_dynamic_brightness(bool state);
void set_main_color(uint8_t red, uint8_t green, uint8_t blue);
void set_night_mode(bool on);
void state_change(uint8_t newState);
void state_change(ClockState_en new_state);
void update_matrix(void);
void write_settings_to_EEPROM(void);

View File

@@ -14,14 +14,12 @@ default_envs = nodemcuv2
[env]
platform = espressif8266
board = nodemcuv2
build_flags = -DUSING_TIM_DIV16=1
framework = arduino
lib_deps =
adafruit/Adafruit BusIO@^1.15.0
adafruit/Adafruit NeoMatrix@^1.3.0
adafruit/Adafruit NeoPixel@^1.11.0
densaugeo/base64@^1.4.0
khoih-prog/ESP8266TimerInterrupt@^1.6.0
tzapu/WiFiManager@^0.16.0
[env:nodemcuv2]

View File

@@ -1,41 +1,76 @@
#include "time_manager.h"
#include <ESP8266TimerInterrupt.h> // https://github.com/khoih-prog/ESP8266TimerInterrupt
#include "wordclock_constants.h"
#include "time.h"
#include <coredecls.h> // required for settimeofday_cb()
#include <sntp.h>
#include <time.h>
extern UDPLogger logger; // logging instance
extern ESP8266Timer ITimer; // ESP8266 Timer
extern void IRAM_ATTR TimerHandler(); // ISR function
extern UDPLogger logger; // logging instance
// ----------------------------------------------------------------------------------
// Class
// ----------------------------------------------------------------------------------
TimeManager::TimeManager(){};
TimeManager::TimeManager(const char *tz,
const char *ntp_server,
uint32 ntp_update_period_s,
uint32 ntp_retry_delay_us,
bool (*is_wifi_connected)(void),
uint32 ntp_max_offline_time_s,
UDPLogger *logger)
{
_tz = tz;
_ntp_server = ntp_server;
_is_wifi_connected = is_wifi_connected;
_ntp_max_offline_time_s = ntp_max_offline_time_s;
_ntp_retry_delay_us = ntp_retry_delay_us;
_ntp_update_period_s = ntp_update_period_s;
_logger = logger;
}
void TimeManager::init()
{
// Set up NTP server once
_set_up_ntp();
if (_tm_state == TM_INITIAL_SYNC)
{
// force sntp reinit now
sntp_stop();
sntp_init();
}
settimeofday_cb([&]() { time_set_cb(); });
}
bool TimeManager::ntp_sync_successful(void) const
{
return (_time_now_ntp > 0);
return (_now > 1716913300); // UTC timestamp in the past (28.05.2024)
}
bool TimeManager::ntp_update_failed_prolonged(void)
bool TimeManager::ntp_sync_overdue(void)
{
bool retval = false;
if (_time_now_local >= (_time_now_ntp + (time_t)_ntp_max_offline_time_s))
if (!ntp_sync_successful())
{
_tm_state = TM_PROLONGED_SYNC_FAIL;
return false;
}
bool retval = false;
// after the ntp sync update delay has been reached six times, the sync is considered overdue
if (_now >= (_ntp_sync_timestamp_s + (time_t)(6 * (sntp_update_delay_MS_rfc_not_less_than_15000() / 1000))))
{
_tm_state = TM_SYNC_OVERDUE;
retval = true;
}
return retval;
}
bool TimeManager::ntp_sync_timeout(void)
{
if (!ntp_sync_successful())
{
return false;
}
bool retval = false;
// after the maxmimum offline time has been reached, the sync is considered timed out
if (_now >= (_ntp_sync_timestamp_s + (time_t)_ntp_max_offline_time_s))
{
_tm_state = TM_SYNC_TIMEOUT;
retval = true;
}
return retval;
@@ -46,117 +81,67 @@ bool TimeManager::ntp_update_failed_prolonged(void)
*
* @retval true if last update was successful
*/
NtpUpdateState TimeManager::ntp_time_update()
TimeUpdateState TimeManager::get_time()
{
NtpUpdateState retval = NTP_UPDATE_PENDING; // NTP time update
struct tm time_info; // local NTP time info
// Set up NTP server once
if (_tm_state == TM_INIT)
{
_set_up_ntp();
}
if (_tm_state == TM_SETUP_FAILED)
{
return NTP_UPDATE_SETUP_FAILED;
}
// Check if minimum update delay has elapsed. This is always active to prevent too many NTP server requests!
if ((_tm_state != TM_INITIAL_SYNC) && (system_get_time() - _ntp_sync_timestamp_us) <= _ntp_retry_delay_us)
{
return NTP_UPDATE_RETRY_DELAY;
}
// Check if it is time for a NTP sync.
if ((_tm_state != TM_INITIAL_SYNC) && (_tm_state != TM_RETRY_SYNC) && (((system_get_time() - _ntp_sync_timestamp_us) / 1000000) <= _ntp_update_period_s))
{
return NTP_UPDATE_TOO_EARLY;
}
_ntp_sync_timestamp_us = system_get_time(); // NTP update start time
TimeUpdateState retval = TIME_UPDATE_PENDING; // NTP time update
uint32 timestamp_us = system_get_time(); // NTP update start time
struct tm time_info; // local NTP time info
do
{
time(&_time_now_ntp); // get time from server and save it into _time_now_ntp
localtime_r(&_time_now_ntp, &time_info); // convert time
yield(); // since this loop could take up to NTP_MAX_UPDATE_TIME_US
_now = time(nullptr); // update time
(void)localtime_r(&_now, &time_info); // convert time
yield(); // since this loop could take up to NTP_MAX_UPDATE_TIME_US
} while (((system_get_time() - _ntp_sync_timestamp_us) <= NTP_MAX_UPDATE_TIME_US) && (time_info.tm_year < (NTP_MININUM_RX_YEAR - NTP_START_YEAR)));
} while (((system_get_time() - timestamp_us) <= NTP_MAX_UPDATE_TIME_US) && (time_info.tm_year < (NTP_MINIMUM_RX_YEAR - NTP_START_YEAR)));
retval = (time_info.tm_year <= (NTP_MININUM_RX_YEAR - NTP_START_YEAR)) ? NTP_UPDATE_FAILED : NTP_UPDATE_OK; // sanity check
retval = (time_info.tm_year <= (NTP_MINIMUM_RX_YEAR - NTP_START_YEAR)) ? TIME_UPDATE_FAILED : TIME_UPDATE_OK; // sanity check
if (retval == NTP_UPDATE_OK)
if (retval == TIME_UPDATE_OK)
{
_ntp_sync_timestamp_us = system_get_time(); // save NTP update timestamp
_time_info = time_info; // take over time_info to member variable
log_time(); // log current time
if ((_tm_state != TM_INITIAL_SYNC) && (abs(_time_now_ntp - _time_now_local) > 10)) // in the case that the local time drifted more than 10s in _ntp_update_period_s
{
_logger->log_string(String("Difference between local and NTP time was more than 10 seconds!\n"));
_logger->log_string("Local time was: " + String(_time_now_local) + ", NTP time is: " + String(_time_now_ntp) + "\n");
}
_time_now_local = _time_now_ntp; // sync local time with NTP time
if (_tm_state == TM_INITIAL_SYNC) // only set up the timer once after NTP update was successful
{
_set_up_timer_isr();
}
else // set state to normal
{
_tm_state = TM_NORMAL;
}
_time_info = time_info; // take over time_info to member variable
_tm_state = TM_NORMAL;
}
else
{
_tm_state = TM_RETRY_SYNC;
logger.log_string("NTP-Update was not successful. Retrying in " + String(_ntp_retry_delay_us / 1000) + "ms.");
logger.log_string("NTP-Update was not successful. Retrying in " + String(sntp_update_delay_MS_rfc_not_less_than_15000()) + "ms.");
}
return retval;
}
bool TimeManager::tm_isdst(void)
bool TimeManager::isdst(void) const
{
localtime_r(&_time_now_local, &_time_info); // convert time
return _time_info.tm_isdst > 0;
return (_time_info.tm_isdst > 0);
}
int TimeManager::tm_day(void)
int TimeManager::day(void) const
{
localtime_r(&_time_now_local, &_time_info); // convert time
return _time_info.tm_mday + 1; // add 1 to get actual day
return (_time_info.tm_mday + 1); // add 1 to get actual day
}
int TimeManager::tm_hour(void)
int TimeManager::hour(void) const
{
localtime_r(&_time_now_local, &_time_info); // convert time
return _time_info.tm_hour;
}
int TimeManager::tm_min(void)
int TimeManager::minute(void) const
{
localtime_r(&_time_now_local, &_time_info); // convert time
return _time_info.tm_min;
}
int TimeManager::tm_mon(void)
int TimeManager::month(void) const
{
localtime_r(&_time_now_local, &_time_info); // convert time
return _time_info.tm_mon + 1; // add 1 to get actual month
return (_time_info.tm_mon + 1); // add 1 to get actual month
}
int TimeManager::tm_year(void)
int TimeManager::year(void) const
{
localtime_r(&_time_now_local, &_time_info); // convert time
return _time_info.tm_year + NTP_START_YEAR; // add start year to get actual year
}
struct tm TimeManager::time_info(void)
struct tm TimeManager::time_info(void) const
{
localtime_r(&_time_now_local, &_time_info); // convert time
return _time_info;
}
@@ -207,21 +192,23 @@ void TimeManager::_set_up_ntp(void)
}
}
/**
* @brief Sets up the timer ISR
*
*/
void TimeManager::_set_up_timer_isr(void)
void TimeManager::time_set_cb(void)
{
// set up timer interrupt after NTP update is done
if (ITimer.attachInterruptInterval(PERIOD_CLOCK_UPDATE_US, TimerHandler))
if ((*_is_wifi_connected)())
{
_tm_state = TM_NORMAL;
logger.log_string(String("Timer ISR was attached successfully!"));
if (get_time() == TIME_UPDATE_OK)
{
_ntp_sync_timestamp_s = _now;
logger.log_string("NTP successfully synced at...");
log_time();
}
else
{
logger.log_string("NTP sync failed!");
}
}
else
{
_tm_state = TM_SETUP_FAILED;
logger.log_string("WARNING: Timer interrupt was not attached!");
logger.log_string("NTP sync failed, WiFi is not connected!");
}
}

View File

@@ -179,58 +179,79 @@ String time_to_string(uint8_t hours, uint8_t minutes)
// show hours
switch (hours)
{
case 0:
if (minutes >= 0 && minutes < 5)
case 0:
{
message += "MITTERNACHT ";
if (minutes >= 0 && minutes < 5)
{
message += "MITTERNACHT ";
}
else
{
message += "ZWOLF ";
}
break;
}
else
case 1:
{
message += "EIN";
message += (minutes > 4) ? "S " : " "; // add "S" if needed
break;
}
case 2:
{
message += "ZWEI ";
break;
}
case 3:
{
message += "DREI ";
break;
}
case 4:
{
message += "VIER ";
break;
}
case 5:
{
message += "FUNF ";
break;
}
case 6:
{
message += "SECHS ";
break;
}
case 7:
{
message += "SIEBEN ";
break;
}
case 8:
{
message += "ACHT ";
break;
}
case 9:
{
message += "NEUN ";
break;
}
case 10:
{
message += "ZEHN ";
break;
}
case 11:
{
message += "ELF ";
break;
}
case 12:
{
message += "ZWOLF ";
break;
}
break;
case 1:
message += "EIN";
// EIN(S)
if (minutes > 4)
{
message += "S";
}
message += " ";
break;
case 2:
message += "ZWEI ";
break;
case 3:
message += "DREI ";
break;
case 4:
message += "VIER ";
break;
case 5:
message += "FUNF ";
break;
case 6:
message += "SECHS ";
break;
case 7:
message += "SIEBEN ";
break;
case 8:
message += "ACHT ";
break;
case 9:
message += "NEUN ";
break;
case 10:
message += "ZEHN ";
break;
case 11:
message += "ELF ";
break;
case 12:
message += "ZWOLF ";
break;
}
if ((minutes < 5) && (hours != 0))
{

View File

@@ -28,8 +28,6 @@
#include <Adafruit_NeoPixel.h> // NeoPixel library used to run the NeoPixel LEDs: https://github.com/adafruit/Adafruit_NeoPixel
#include <base64.hpp>
#include <EEPROM.h> // from ESP8266 Arduino Core (automatically installed when ESP8266 was installed via Boardmanager)
#include <ESP8266_ISR_Timer.h> // https://github.com/khoih-prog/ESP8266TimerInterrupt
#include <ESP8266TimerInterrupt.h> // https://github.com/khoih-prog/ESP8266TimerInterrupt
#include <ESP8266WebServer.h>
#include <ESP8266WiFi.h>
#include <WiFiManager.h> // https://github.com/tzapu/WiFiManager WiFi Configuration Magic
@@ -71,20 +69,16 @@ static Pong pong = Pong(&led_matrix, &logger);
static Snake snake = Snake(&led_matrix, &logger);
static Tetris tetris = Tetris(&led_matrix, &logger);
// Time ManagerW
static TimeManager tm_mgr = TimeManager(MY_TZ, NTP_SERVER_URL,
NTP_UPDATE_PERIOD_S,
NTP_RETRY_DELAY_US,
NTP_MAX_OFFLINE_TIME_S,
&logger);
// Time Manager
static TimeManager tm_mgr;
// State variablesW
// State variables
static bool flg_night_mode = false; // State of nightmode
static bool flg_reset_wifi_creds = false; // Used to reset stored wifi credentials
static float filter_factor = DEFAULT_SMOOTHING_FACTOR; // Stores smoothing factor for led transition, value of 1 represents no smoothing.
static uint32_t main_color_clock = colors_24bit[2]; // Color of the clock and digital clock
static uint8_t current_brightness = DEFAULT_BRIGHTNESS; // Current brightness of LEDs
static uint8_t current_state = (uint8_t)ST_CLOCK; // Stores current state
static ClockState_en current_state = ST_CLOCK; // Stores current state
// Other variables
static uint32 last_led_direct_us = 0; // Time of last direct LED command (=> fall back to normal mode after timeout)
@@ -104,18 +98,6 @@ static const uint32_t period_timings[NUM_STATES] = {PERIOD_TIME_UPDATE_US, PERIO
PERIOD_ANIMATION_US, PERIOD_TETRIS_US, PERIOD_SNAKE_US,
PERIOD_PONG_US, PERIOD_ANIMATION_US};
// ----------------------------------------------------------------------------------
// STATIC VARIABLES
// ----------------------------------------------------------------------------------
ESP8266Timer ITimer; // ESP8266 Timer
// ----------------------------------------------------------------------------------
// ISR
// ----------------------------------------------------------------------------------
void IRAM_ATTR TimerHandler()
{
tm_mgr.increment_time_now_local();
}
// ----------------------------------------------------------------------------------
// SETUP
@@ -153,7 +135,7 @@ void setup()
led_matrix.set_current_limit(CURRENT_LIMIT_LED);
// Turn on minutes LEDs (blue)
led_matrix.set_min_indicator(15, colors_24bit[6]);
led_matrix.set_min_indicator((uint8_t)0b1111, colors_24bit[6]);
led_matrix.draw_on_matrix_instant();
/* Use WiFiMaanger for handling initial Wifi setup */
@@ -172,7 +154,7 @@ void setup()
WiFi.persistent(true);
// Turn off minutes LEDs
led_matrix.set_min_indicator(15, 0);
led_matrix.set_min_indicator((uint8_t)0b1111, 0);
led_matrix.draw_on_matrix_instant();
// init ESP8266 File manager (LittleFS)
@@ -194,13 +176,16 @@ void setup()
cold_start_setup();
}
// get initial time
if (tm_mgr.ntp_time_update() == NTP_UPDATE_OK)
// set up time manager and get initial time
tm_mgr = TimeManager(MY_TZ, NTP_SERVER_URL, check_wifi_status, NTP_MAX_OFFLINE_TIME_S, &logger);
tm_mgr.init();
if (tm_mgr.get_time() == TIME_UPDATE_OK)
{
// show the current time for short time in words
String timeMessage = time_to_string(tm_mgr.tm_hour(), tm_mgr.tm_min());
String timeMessage = time_to_string(tm_mgr.hour(), tm_mgr.minute());
show_string_on_clock(timeMessage, main_color_clock);
draw_minute_indicator(tm_mgr.tm_min(), main_color_clock);
draw_minute_indicator(tm_mgr.minute(), main_color_clock);
led_matrix.draw_on_matrix_smooth(filter_factor);
}
else
@@ -209,11 +194,8 @@ void setup()
}
// init all animation modes
// init snake
random_snake(true, 8, colors_24bit[1], -1);
// init spiral
draw_spiral(true, spiral_direction, MATRIX_WIDTH - 6);
// init random tetris
random_tetris(true);
// Set range limits
@@ -280,17 +262,16 @@ void loop()
if ((current_time_us - last_time_update_us) >= PERIOD_TIME_UPDATE_US)
{
if (tm_mgr.ntp_time_update() == NTP_UPDATE_OK) // NTP time update
{
logger.log_string("NTP sync successful!");
}
(void)tm_mgr.get_time(); // NTP time update
if (tm_mgr.ntp_update_failed_prolonged() == true)
if (tm_mgr.ntp_sync_timeout())
{
logger.log_string("Trigger restart due to being offline for too long...");
delay(100);
ESP.restart();
}
last_time_update_us = system_get_time();
}
if ((current_time_us - last_nightmode_check_us) >= PERIOD_NIGHTMODE_CHECK_US)
@@ -366,87 +347,87 @@ void handle_current_state()
{
switch (current_state)
{
case ST_CLOCK: // state clock
{
if (tm_mgr.ntp_sync_successful() && tm_mgr.tm_state() == TM_NORMAL)
case ST_CLOCK: // state clock
{
(void)show_string_on_clock(time_to_string((uint8_t)tm_mgr.tm_hour(), (uint8_t)tm_mgr.tm_min()), main_color_clock);
draw_minute_indicator((uint8_t)tm_mgr.tm_min(), main_color_clock);
if (tm_mgr.tm_state() == TM_NORMAL)
{
(void)show_string_on_clock(time_to_string((uint8_t)tm_mgr.hour(), (uint8_t)tm_mgr.minute()), main_color_clock);
draw_minute_indicator((uint8_t)tm_mgr.minute(), main_color_clock);
}
else if (tm_mgr.ntp_sync_overdue()) // if NTP sync is overdue
{
(void)show_string_on_clock(time_to_string((uint8_t)tm_mgr.hour(), (uint8_t)tm_mgr.minute()), main_color_clock);
draw_minute_indicator((uint8_t)tm_mgr.minute(), colors_24bit[6]); // in blue to indicate a network problem
}
else // if no NTP sync has been done, only show 4 blue minute indicators
{
// clear matrix
led_matrix.flush();
// Turn on minutes LEDs (blue)
led_matrix.set_min_indicator((uint8_t)0b1111, colors_24bit[6]);
led_matrix.draw_on_matrix_instant();
}
break;
}
else if (tm_mgr.ntp_sync_successful() && tm_mgr.tm_state() == TM_RETRY_SYNC)
case ST_DICLOCK: // state diclock
{
(void)show_string_on_clock(time_to_string((uint8_t)tm_mgr.tm_hour(), (uint8_t)tm_mgr.tm_min()), main_color_clock);
draw_minute_indicator((uint8_t)tm_mgr.tm_min(), colors_24bit[6]); // in blue to indicate a network problem
if (tm_mgr.ntp_sync_successful())
{
show_digital_clock((uint8_t)tm_mgr.hour(), (uint8_t)tm_mgr.minute(), main_color_clock);
}
else
{
// clear matrix
led_matrix.flush();
// Turn on minutes LEDs (blue)
led_matrix.set_min_indicator((uint8_t)0b1111, colors_24bit[6]);
led_matrix.draw_on_matrix_instant();
}
break;
}
else
case ST_SPIRAL: // state spiral
{
// clear matrix
led_matrix.flush();
// Turn on minutes LEDs (blue)
led_matrix.set_min_indicator(15, colors_24bit[6]);
led_matrix.draw_on_matrix_instant();
int res = draw_spiral(false, spiral_direction, MATRIX_WIDTH - 2);
if ((bool)res && spiral_direction == 0)
{
// change spiral direction to closing (draw empty LEDs)
spiral_direction = true;
// init spiral with new spiral direction
draw_spiral(true, spiral_direction, MATRIX_WIDTH - 1);
}
else if (res && spiral_direction == 1)
{
// reset spiral direction to normal drawing LEDs
spiral_direction = false;
// init spiral with new spiral direction
draw_spiral(true, spiral_direction, MATRIX_WIDTH - 1);
}
break;
}
break;
}
case ST_DICLOCK: // state diclock
{
if (tm_mgr.ntp_sync_successful())
case ST_TETRIS: // state tetris
{
show_digital_clock((uint8_t)tm_mgr.tm_hour(), (uint8_t)tm_mgr.tm_min(), main_color_clock);
tetris.loopCycle();
break;
}
else
case ST_SNAKE: // state snake
{
// clear matrix
led_matrix.flush();
// Turn on minutes LEDs (blue)
led_matrix.set_min_indicator(15, colors_24bit[6]);
led_matrix.draw_on_matrix_instant();
snake.loopCycle();
break;
}
break;
}
case ST_SPIRAL: // state spiral
{
int res = draw_spiral(false, spiral_direction, MATRIX_WIDTH - 2);
if ((bool)res && spiral_direction == 0)
case ST_PINGPONG: // state ping pong
{
// change spiral direction to closing (draw empty LEDs)
spiral_direction = true;
// init spiral with new spiral direction
draw_spiral(true, spiral_direction, MATRIX_WIDTH - 1);
pong.loopCycle();
break;
}
else if (res && spiral_direction == 1)
case ST_HEARTS:
{
// reset spiral direction to normal drawing LEDs
spiral_direction = false;
// init spiral with new spiral direction
draw_spiral(true, spiral_direction, MATRIX_WIDTH - 1);
draw_heart_animation();
break;
}
default:
{
break;
}
break;
}
case ST_TETRIS: // state tetris
{
tetris.loopCycle();
break;
}
case ST_SNAKE: // state snake
{
snake.loopCycle();
break;
}
case ST_PINGPONG: // state ping pong
{
pong.loopCycle();
break;
}
case ST_HEARTS:
{
draw_heart_animation();
break;
}
default:
{
break;
}
}
}
@@ -498,9 +479,9 @@ bool check_wifi_status()
*/
void check_night_mode()
{
// check if nightmode need to be activated
int hours = tm_mgr.tm_hour();
int minutes = tm_mgr.tm_min();
// Check if nightmode needs to be activated. This only toggles at the exact minute.
int hours = tm_mgr.hour();
int minutes = tm_mgr.minute();
if ((hours == night_mode_times_ps->start_hour) && (minutes == night_mode_times_ps->start_min))
{
@@ -522,43 +503,43 @@ void on_state_entry(uint8_t state)
filter_factor = DEFAULT_SMOOTHING_FACTOR;
switch (state)
{
case ST_SPIRAL:
{
spiral_direction = 0; // Init spiral with normal drawing mode
draw_spiral(true, spiral_direction, MATRIX_WIDTH - 1);
break;
}
case ST_TETRIS:
{
filter_factor = 1.0f; // no smoothing
tetris.ctrlStart();
break;
}
case ST_SNAKE:
{
filter_factor = 1.0f; // no smoothing
snake.initGame();
break;
}
case ST_PINGPONG:
{
filter_factor = 1.0f; // no smoothing
pong.initGame(1);
break;
}
default:
{
break;
}
case ST_SPIRAL:
{
spiral_direction = 0; // Init spiral with normal drawing mode
draw_spiral(true, spiral_direction, MATRIX_WIDTH - 1);
break;
}
case ST_TETRIS:
{
filter_factor = 1.0f; // no smoothing
tetris.ctrlStart();
break;
}
case ST_SNAKE:
{
filter_factor = 1.0f; // no smoothing
snake.initGame();
break;
}
case ST_PINGPONG:
{
filter_factor = 1.0f; // no smoothing
pong.initGame(1);
break;
}
default:
{
break;
}
}
}
/**
* @brief execute a state change to given newState
* @brief execute a state change to given new_state
*
* @param newState the new state to be changed to
* @param new_state the new state to be changed to
*/
void state_change(uint8_t newState)
void state_change(ClockState_en new_state)
{
if (flg_night_mode)
{
@@ -566,9 +547,9 @@ void state_change(uint8_t newState)
}
led_matrix.flush(); // first clear matrix
current_state = newState; // set new state
on_state_entry(current_state);
logger.log_string("State change to: " + state_names[current_state]);
current_state = new_state; // set new state
on_state_entry((uint8_t)current_state);
logger.log_string("State change to: " + state_names[(uint8_t)current_state]);
logger.log_string("FreeMemory=" + String(ESP.getFreeHeap()));
}
@@ -660,7 +641,7 @@ void handle_button()
}
else
{
state_change((current_state + 1) % (uint8_t)NUM_STATES);
state_change((ClockState_en)(((uint8_t)current_state + 1) % (uint8_t)NUM_STATES));
}
}
}
@@ -735,6 +716,7 @@ void handle_command()
{
String mode_str = webserver.arg(0);
logger.log_string("Mode change via Webserver to: " + mode_str);
// set current mode/state accordant sent mode
if (mode_str.equals("clock"))
{
@@ -1049,9 +1031,9 @@ uint8_t update_brightness()
{
new_brightness = calculate_dynamic_brightness(brightness_ps->dyn_brightness_min,
brightness_ps->dyn_brightness_max,
tm_mgr.tm_hour(),
tm_mgr.tm_min(),
tm_mgr.tm_isdst());
tm_mgr.hour(),
tm_mgr.minute(),
tm_mgr.isdst());
}
else // use static brightness
{